I think I might be confusing 'material implication' with 'logical implication' (also known as entailment, or logical consequence).
Because from your last sentence, I thought, if A => B is True and A => not B is True, then A doesn't imply B, or B doesn't (necessarily) follow from A. I think this notion of "B follows from A" is something represented by entailment, not by material implication. (?)
Would it be correct to say that material implication is just a formula (in which case it shouldn't even be called an implication or a conditional, but something like simply a 'material formula'), while entailment is the one that has a real world interpretation? (Also entailment cannot be encoded as a formula but has to be proven on a case-by-case basis?)
edit: But this is again a problem. Because in order to prove entailment we'd invoke a logical proof, which would be a sequence (or a tree or a graph) of logical statements with the chain of reasoning connected by, surprise surprise, material implication, which we have already discarded as just a formula with no convincing logical interpretation! (hence our proof is not convincingly logical!)
edit 2: And that is my main issue with how logicians try to justify material implication. On one hand, they try to convince you that MI is nothing but a formula. On the other hand, they use MI as a connecting glue in mathematical proofs which to me sounds like they're using it as 'entailment'. This feels like a double standard at best.
> I think I might be confusing 'material implication' with 'logical implication' (also known as entailment, or logical consequence).
Both are intended to work essentially identical, but when talking about logic, it might be helpful to make the distinction. Implication as a formula is usually written with →, semantic entailment between formulas with ⊨. That they are essentially identical is because, if A → B is entailed unconditionally ( ⊨ A → B ), then A entails B ( A ⊨ B ).
When you apply this distinction to
> if A => B is True and A => not B is True
you have ( ⊨ A → B ) and ( ⊨ A → ¬B ). That is not very different from ( A ⊨ B ) and ( A ⊨ ¬B ), or ( A ⊨ B ∧ ¬B ), where the consequence is contradictory. Unless logic is broken, you can only arrive at contradictions when you already started with them, so A itself must be contradictory. When you said that A is false, that's exactly what you required: A is contradictory.
Maybe the above doesn't help you much, but it should make clear that your problem isn't just with the difference between implication and entailment.
EDIT: I didn't see your edits. I think I already somewhat responded to edit 1 (implication does have an interpretation, as an encoding of entailment). Regarding edit 2: Implication is justified by mostly working like our intuition would expect. Maybe you should try coming up with alternatives and test how well they work.
MORE EDIT: I think what you're actually confused about is the difference between a formula being true only under certain circumstances vs. always. Implication being true when the premise is false is a bit like a broken clock being sometimes right: if you only focus on that one case, it's not what you expect, but when you take all cases into account, it's the only way it could be.
Because from your last sentence, I thought, if A => B is True and A => not B is True, then A doesn't imply B, or B doesn't (necessarily) follow from A. I think this notion of "B follows from A" is something represented by entailment, not by material implication. (?)
Would it be correct to say that material implication is just a formula (in which case it shouldn't even be called an implication or a conditional, but something like simply a 'material formula'), while entailment is the one that has a real world interpretation? (Also entailment cannot be encoded as a formula but has to be proven on a case-by-case basis?)
edit: But this is again a problem. Because in order to prove entailment we'd invoke a logical proof, which would be a sequence (or a tree or a graph) of logical statements with the chain of reasoning connected by, surprise surprise, material implication, which we have already discarded as just a formula with no convincing logical interpretation! (hence our proof is not convincingly logical!)
edit 2: And that is my main issue with how logicians try to justify material implication. On one hand, they try to convince you that MI is nothing but a formula. On the other hand, they use MI as a connecting glue in mathematical proofs which to me sounds like they're using it as 'entailment'. This feels like a double standard at best.